The sulfonylurea glimepiride regulates intracellular routing of the insulin-receptor complexes through their interaction with specific protein kinase C isoforms.

نویسندگان

  • M L Hribal
  • R D'Alfonso
  • B Giovannone
  • D Lauro
  • Y Y Liu
  • P Borboni
  • M Federici
  • R Lauro
  • G Sesti
چکیده

Sulfonylureas may stimulate glucose metabolism by protein kinase C (PKC) activation. Because interaction of insulin receptors with PKC plays an important role in controlling the intracellular sorting of the insulin-receptor complex, we investigated the possibility that the sulfonylurea glimepiride may influence intracellular routing of insulin and its receptor through a mechanism involving PKC, and that changes in these processes may be associated with improved insulin action. Using human hepatoma Hep-G2 cells, we found that glimepiride did not affect insulin binding, insulin receptor isoform expression, and insulin-induced receptor internalization. By contrast, glimepiride significantly increased intracellular dissociation of the insulin-receptor complex, degradation of insulin, recycling of internalized insulin receptors, release of internalized radioactivity, and prevented insulin-induced receptor down-regulation. Association of PKC-betaII and -epsilon with insulin receptors was increased in glimepiride-treated cells. Selective depletion of cellular PKC-betaII and -epsilon by exposure to 12-O-tetradecanoylphorbol-13-acetate (TPA) or treatment of cells with PKC-betaII inhibitor G06976 reversed the effect of glimepiride on intracellular insulin-receptor processing. Glimepiride increased the effects of insulin on glucose incorporation into glycogen by enhancing both sensitivity and maximal efficacy of insulin. Exposing cells to TPA or G06976 inhibitor reversed these effects. Results indicate that glimepiride increases intracellular sorting of the insulin-receptor complex toward the degradative route, which is associated with both an increased association of the insulin receptor with PKCs and improved insulin action. These data suggest a novel mechanism of action of sulfonylurea, which may have a therapeutic impact on the treatment of type 2 diabetes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular basis of protein kinase C-induced activation of ATP-sensitive potassium channels.

Potassium channels that are inhibited by internal ATP (K(ATP) channels) provide a critical link between metabolism and cellular excitability. Protein kinase C (PKC) acts on K(ATP) channels to regulate diverse cellular processes, including cardioprotection by ischemic preconditioning and pancreatic insulin secretion. PKC action decreases the Hill coefficient of ATP binding to cardiac K(ATP) chan...

متن کامل

Stimulation of a glycosyl-phosphatidylinositol-specific phospholipase by insulin and the sulfonylurea, glimepiride, in rat adipocytes depends on increased glucose transport

Lipoprotein lipase (LPL) and glycolipid-anchored cAMP-binding ectoprotein (Gce1) are modified by glycosyl-phosphatidylinositol (GPI) in rat adipocytes, however, the linkage is potentially unstable. Incubation of the cells with either insulin (0.1-30 nM) or the sulfonylurea, glimepiride (0.5-20 microM), in the presence of glucose led to conversion of up to 35 and 20%, respectively, of the total ...

متن کامل

Differential interaction of glimepiride and glibenclamide with the beta-cell sulfonylurea receptor. I. Binding characteristics.

Glimepiride is a novel sulfonylurea drug for treatment of non-insulin-dependent diabetes mellitus with higher blood sugar lowering efficacy in diabetic patients than glibenclamide raising the question whether this characteristics is in line with different binding of glimepiride and glibenclamide to the beta-cell sulfonylurea receptor. Scatchard plot analysis of [3H]sulfonylurea binding to membr...

متن کامل

Effects of Sulfonylureas on Peroxisome Proliferator-Activated Receptor γ Activity and on Glucose Uptake by Thiazolidinediones

BACKGROUND Sulfonylurea primarily stimulates insulin secretion by binding to its receptor on the pancreatic β-cells. Recent studies have suggested that sulfonylureas induce insulin sensitivity through peroxisome proliferator-activated receptor γ (PPARγ), one of the nuclear receptors. In this study, we investigated the effects of sulfonylurea on PPARγ transcriptional activity and on the glucose ...

متن کامل

Activation of GPR40 as a Therapeutic Target for the Treatment of Type 2 Diabetes

The stimulation of insulin secretion by glucose can be modulated by multiple nutritive, hormonal, and pharmacological inputs. Fatty acids potentiate insulin secretion through the generation of intracellular signaling molecules and through the activation of cell surface receptors. The G-protein-coupled receptor 40 (GPR40), also known as free fatty acid receptor 1 (we will use GPR40 in this revie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular pharmacology

دوره 59 2  شماره 

صفحات  -

تاریخ انتشار 2001